

Genetic Counselling in Breast Cancer

Prof Nur Aishah Taib

Director, UMCRi, UM Senior Consultant Breast Surgeon Breast Unit, Department of Surgery, UMMC Medical Genetics Unit, UMMC

CANCER ECHO UM 25 Feb 2021

Outline

- Cancer genetics principles
- Mainstreaming vs conventional genetic testing
- Testing criteria and risk models
- Guiding principles to tests types of tests (direct to consumer tests)
- Interpreting results and post test counselling
- Cascade or predictive testing
- Risk Management

Clinical Application

In oncology, the two dominant applications are:

 the assessment of somatic alterations in tumors to inform prognosis and/or targeted therapeutics;

 the assessment of the germline to identify cancer risk, targeted therapeutics and treatments

Cancer Genetics Principles

- What are genes
- Wildtype vs mutants
- Somatic vs Germline mutation
- Oncogenes and tumour suppressor genes
- Application in cancer

- Homologous Recombinant Deficiency (HRD)
- Traditional vs Mainstreaming of Genetic testing

Genes in perspective

http://pathology.jhu.edu/pc/BasicCauses.php?area=ba

Karyotype (23 pairs of chromosomes)

Definitely not human

Wild type

- The allele that encodes the phenotype most common in a particular natural population is known as the wild type allele. It is often designated, in genetic shorthand, as "+".
- Any form of that allele other than the wild type is known as a **mutant** form of that allele.
- Wild type penguins wear tuxedos. Albino mutants look white.

Se **Genetic Disea** σ <u>.</u> Cancer

Two-Hit Theory of Cancer Causation

Normal cells typically have two undamaged chromosomes; one inherited from our mother and the other from our father. Each chromosome contains thousands of genes some of which are responsible for controlling cancer.

NON-HEREDITARY CANCER By Chance – Most Common

All Cancer is Genetic, Not All Cancer is Inherited

Somatic vs Germline Mutation

Somatic mutations

- Occur in nongermline tissues
- Cannot be inherited

Germline mutations

- Present in egg or sperm
- Can be inherited
- Cause cancer family syndrome

Adapted from the National Cancer Institute and the American Society of Clinical Oncology

Proto-oncogene to Oncogene

Proto-oncogene to oncogene

Tumour suppressor gene

Oncogenes and Tumour suppressor genes

Oncogenes

- Turn on
- Aka Proto-oncogene
- Chromosome rearrangements (Philadelphia chrom in CML)
- Gene duplication
- Acquired

Tumour suppressor genes

- Turn off
- Slow down cell division
- Repair DNA mistakes, (eg HRR genes)
- Tell cells when to die (apoptosis or programmed cell death).
- Inherited eg BRCA1/2, p53
- Acquired eg p53

Homologous Recombinant Repair

 HRR is a DNA repair pathway of clinical interest due to the sensitivity of HRR deficient cells to poly(ADP-ribose) polymerase (PARP) inhibitors, and platinum-containing chemotherapy.

Homologous Recombination Repair

poly ADP ribose polymerase (PARP)

Homologous recombinant repair deficiency (HRD)

- Assays measuring homologous recombination deficiency (HRD) caused by a broader range of mechanisms than *BRCA1/2* loss.
- Tests identify somatic mutations in *BRCA1/2* and other HRR-related genes and detect the presence of genomic scars indicative of HRD.

Homologous Recombination Repair

- Genes that are directly or indirectly implicated in HRR include :
- BRCA1, BRCA2, CHEK2, ATM, PALB2, FANCA, and RAD51D, among others.

Clinical Application

In oncology, the two dominant applications are:

 the assessment of somatic alterations in tumors to inform prognosis and/or targeted therapeutics;

 the assessment of the germline to identify cancer risk, targeted therapeutics and treatments

BRCA Timeline

Caucasian (BCAC)

Asian: Malaysia (MyBRCA)

//www.nature.com/icogs/primer/common-variation-and-heritability-estimates-for-breast-ovarian-and-prostate-cancers/

Hereditary Breast Cancer Syndromes

Hereditary Breast and Ovarian Cancer Syndromes

Hereditary Breast cancer and ovarian cancer syndrome	BRCA1 (17q11)	 Breast cancer, High risk (50–70%); 3 Triple Negative BC, Medullary Carcinom Ovarian cancer, high ri Average age 38.6 ye 	3-4 th decade a sk (40–50%) ears
Type of concor	Dick b	w Ago 70	

Type of cancer	RISK DY Age 70
Breast – initial	57-65%
Breast - second	3% per year (30% at 10 years)
Ovarian	40%
Prostate	None to 2-3 fold increase
Male breast cancer	1%
Colon	Slight increase
Pancreatic cancer	1-4%

Hereditary	BRCA2 (13q12-	Breast cancer, high risk (45-50 %)
breast cancer	q13)	Ovarian cancer, intermediate risk
and ovarian		(18%)
cancer		Prostate cancer
syndrome		Pancreatic cancer
		Melanoma

Type of cancer	Risk by age 70
Breast-initial	45-49%
Breast-second	3% per year
Ovarian	18% (>50 years)
Prostate	7.5-39%
Male breast cancer	6%
Pancreatic	2-7%

Li Fraumeni Syndrome (TP53)

Sarcoma, Leukemia, Adrenocortical, Breast

Breast cancer

- Less than 50 years
- More likely to be triple positive

May be associated malignant phyllloides

Adrenocortical cancer

 50-80% of ACC in childhood

Sarcoma

Li–Fraumeni syndrome **TP53** (17p13.1)

High penetrance for breast cancers at young age Risk of soft-tissue sarcomas and osteosarcomas, brain tumours, leukaemia and adrenocortical carcinoma

Peutz Jegher (STK11)

Peutz–Jeghers syndrome (175200)

STK11 (19p13.3)

Melanocytic macules of the lips, buccal mucosa and digits Multiple gastrointestinal hamartomatous polyps Increased risk of various neoplasms (**breast, testis, pancreas and cervix**)

Cowden's Syndrome (PTEN)

Trichilemmomas

	the second se	
Cowden syndrome	PTEN (10q23.31)	Increased risk of developing neoplasms (breast cancer, thyroid carcinoma, endometrial carcinoma and others) Hamartomatous polyps of the gastrointestinal tract Mucocutaneous lesions
Bannayan–Riley– Rivalcaba syndrome (Paediatric age)	PTEN (10q23.31)	Breast cancer Meningioma Follicular cells tumours of the thyroid (Macrocephaly)

Lynch Syndrome

Lynch cancer family syndrome II (114400) MSH2 (2p22p21), MSH3 (5q11q12), MSH6 (2P16), MLH1 (3p21.3), PMS1 (2q31q33), PMS2 (7p22)

Increased risk of endometrial carcinoma and colorectal carcinoma High risk of multiple primary malignant neoplasms, including breast, ovarian, gastrointestinal and genitourinary carcinomas, sarcomas, glioblastoma and leukaemia

CHEK2 mutations (Li– Fraumeni 2 syndrome?)	CHEK2 (22q12.1)	Breast cancer, intermediate risk (,twofold) Sarcomas Brain tumours
PALB2	PALB2 /FANCN (16p12)	PALB2/FANCN and BRIP1/FANCJ: moderate risk of breast cancer development
Familial-linitis- plastic type gastric cancer and lobular breast carcinomas syndrome	CDH1 (16q22.1)	Gastric cancer Lobular breast cancer

Louis–Bar syndrome

Lymphoma **ATM** (11q22.3) Glioma

Cerebellar ataxia Immune deficiency Medulloblastoma **Breast cancer**

ORIGINAL ARTICLE

The NEW ENGLAND JOURNAL of MEDICINE Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women

Breast Cancer Association Consortium*

Figure 3. Estimated Absolute Risk of Breast Cancer Associated with Protein-Truncating Variants in 8 Genes.

Shown are absolute risks of breast cancer through 80 years of age associated with protein-truncating variants in 8 genes that had significant evidence of an association with breast cancer overall, on the basis of estimated odds ratios from population-based studies. The absolute risk was not calculated for TP53 because of the wide 95% confidence interval for the odds ratio and the known association with a substantial risk of childhood cancer. Baseline absolute risks were derived from population incidences in the United Kingdom in 2016.6 The I bars indicate 95% confidence intervals.

+

٠

February 4, 2021 N Engl J Med 2021; 384:428-439 DOI: 10.1056/NEJMoa1913948

Caucasian (BCAC)

Asian: Malaysia (MyBRCA)

//www.nature.com/icogs/primer/common-variation-and-heritability-estimates-for-breast-ovarian-and-prostate-cancers/

What Are Polygenic Scores and Why Are They Important?

<u>JAMA</u> (IF 45.540) **Pub Date : 2019-05-14** , *DOI*: <u>10.1001/jama.2019.3893</u> Leo P. Sugrue, Rahul S. Desikan

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-020-17680-w OPEN

European polygenic risk score for prediction of breast cancer shows similar performance in Asian women

Weang-Kee Ho et al.#

Clinical Application

In oncology, the two dominant applications are:

 the assessment of somatic alterations in tumors to inform prognosis and/or targeted therapeutics;

 the assessment of the germline to identify cancer risk, targeted therapeutics and treatments

Clinical Application

In oncology, the two dominant applications are:

 the assessment of somatic alterations in tumors to inform prognosis and/or targeted therapeutics;

 the assessment of the germline to identify cancer risk, targeted therapeutics and treatments

CANCER RISK

BUT

- Systematic underuse and inappropriate use of BRCA testing over the past 2 decades, with consequent lost opportunities for improved cancer management and cancer prevention.¹⁴⁻²⁶
- A recent US study estimated that only 20% of eligible individuals are being offered testing, with more than a million eligible individuals not having testing between 2000 and 2010.²⁷ It is further estimated that only 30% of patients with breast cancer and 10% of unaffected individuals with BRCA mutations in the United States have been identified.²⁸
- These challenges and outcomes have been similar in many other countries.¹⁴⁻²⁶
- HRR genes are a therapeutic target

From: Evaluation of Cancer-Based Criteria for Use in Mainstream BRCA1 and BRCA2 Genetic Testing in Patients With Breast Cancer

JAMA Netw Open. 2019;2(5):e194428. doi:10.1001/jamanetworkopen.2019.4428

To improve BRCA testing, the Mainstreaming Cancer Genetics (MCG) Programme has been developing simplified eligibility criteria and testing access processes.²⁹ Ovarian cancer was addressed first, simplifying eligibility to all women with epithelial ovarian cancer, as the BRCA mutation rate is more than 10% within this group. A mainstream test access model was validated in which patients with ovarian cancer were directly approved for BRCA testing by their cancer team, with patients who were BRCA mutation-positive rather than all patients having an appointment for genetics consultation. The mainstream model has proved to be popular, efficient, and cost-effective and more than 1000 patients with ovarian cancer have had BRCA testing through the mainstream access model in the **Royal Marsden National Health Service Foundation Trust**.²

 Ovarian cancer Breast cancer in patient diagnosed ≤45 y Two primary breast cancers, both diagnosed in patient ≤60 y Triple-negative breast cancer Male breast cancer 	MCG	MCGplus
6. Breast cancer plus parent, sibling, or child with any of the above criteria		

Figure Legend:

Mainstreaming Cancer Genetics (MCG) Criteria MCG includes criteria 1 through 5; MCGplus includes criteria 1 through 6. Ovarian cancer indicates epithelial ovarian cancer.

Which test

Germline or Somatic

Germline testing

https://www.breastlink.com/blog/nimmi-s-kapoor-md-gene-tests-asbs/

Germline tests available ~USD 250 =~ RM1000 direct to consumer price

Somatic HRD tests

Test name	Test description	Biomarkers detected	FDA-approved usage as companion diagnostic
myChoice CDx (Myriad Genetics)	 Determines GIS score Positive HRD status defined as positive GIS score or tBRCA1/2 mutations NGS on FFPE tumor tissue 	<i>—BRCA1</i> and <i>BRCA2</i> SNVs, insertions, deletions, and large rearrangements —GIS measuring LOH, TAI, and LST	Niraparib: HRD or <i>BRCA1/2</i> positivity for patients with advanced ovarian cancer previously treated with \geq 3 chemotherapy regimens
			Olaparib: HRD <i>or BRCA1/2</i> positivity when used in combination with bevacizumab as frontline maintenance therapy in patients with advanced ovarian cancer in complete or partial response to first-line platinum-based chemotherapy
FoundationOne CDx (Foundation Medicine)	 Determines LOH score Positive HRD status defined as tBRCA positive and/or LOH high NGS on FFPE tumor tissue 	<i>BRCA1</i> and <i>BRCA2</i> alterations HRR genes: <i>BRCA1</i> , <i>BRCA2</i> , <i>ATM</i> , <i>BARD1</i> , <i>BRIP1</i> , <i>CDK12</i> , <i>CHEK1</i> , <i>CHEK2</i> , <i>FANCL</i> , <i>PALB2</i> , <i>RAD51B</i> , <i>RAD51C</i> , <i>RAD51D</i> , and <i>RAD54L</i> alterations	Rucaparib: positivity for germline or somatic <i>BRCA1/2</i> alterations for patients with advanced ovarian cancer previously treated with ≥ 2 lines of chemotherapy ^a
			Olaparib: —Positivity for germline or somatic <i>BRCA1/2</i> alterations in patients with advanced ovarian cancer in complete or partial response to first-line platinum-based chemotherapy —Germline or somatic HRR gene-mutated metastatic CRPC in patients who have progressed following treatment with enzalutamide or abiraterone

CRPC, castration-resistant prostate cancer; FFPE, formalin-fixed paraffin-embedded; GIS, genomic instability score; HRD, homologous recombination deficiency; HRR, homologous recombination repair; LOH, loss of heterozygosity; LST, large-scale state transition; NGS, next-generation sequencing; SNV, single-nucleotide variant; TAI, telomeric allelic imbalance; t*BRCA*, tumor *BRCA*. ^aAssay can also be used to analyze HRD status for rucaparib maintenance therapy in recurrent ovarian cancer.

In Malaysia, HRD somatic testing offered by one lab ~ RM 4K.

Cancer Genetics Principles

- What are genes
- Wildtype vs mutants
- Somatic vs Germline mutation
- Oncogenes and tumour suppressor genes
- Application in cancer
- Homologous Recombinant Deficiency (HRD)
- Traditional vs Mainstreaming of Genetic testing

Outline

- Cancer genetics principles
- Mainstreaming vs conventional genetic testing
- Testing criteria and risk models
- Guiding principles to tests types of tests (direct to consumer tests)
- Interpreting results and post test counselling
- Cascade or predictive testing
- Risk Management

Risk Management of Carriers

Outline

- Penetrance
- Affected vs unaffected
- Prognosis of previous cancer

Incomplete penetrance

Levels of Penetrance Risk

Breast cancer risk	Genes
High risk:	BRCA1 (17q21)
10- to 20-fold	BRCA2 (13q12.3)
relative risk	TP53 (17p13.1)
Intermediate risk: two- to fourfold relative risk	CHEK2 (22q12.1) ATM (11q22.3) CDH1 (16q22.1) PTEN (10q23.31) BRIP/FANCJ (17q22) PALB2/FANCN (16p12)
Possible low risk:	FANCA (16q24.3)
< twofold	FANCE (6p22–p21)

Tan et al. J Clin Pathol 2008;61:1073–1082. doi:10.1136/jcp.2008.057950

QUICK REFERENCE FOR HEALTHCARE PROVIDERS

Recommendation 31

- Intensive screening of BRCA carriers and high risk individuals should be vigilantly performed and adhered to recommended guidelines.
- Screening of women with pathogenic/likely pathogenic variants in BRCA1 and BRCA2 should be conducted from age 30 to 49 years with both magnetic resonance imaging and mammography. Those 50 years and above, screening with mammography should be done.

Age (years)	Average risk of breast cancer ¹	Moderate risk of breast cancer ²	High risk of breast cancer (but with a 30% or lower probability of being a BRCA or TP53 carrier) ³	Known BRCA1 or BRCA2 carrier	
20 20	Do not offer mammography	Do not offer mammography	Do not offer mammography	Do not offer mammography	
20 - 29	Do not offer MRI	Do not offer MRI	Do not offer MRI	Do not offer MRI	
30 - 39	Do not offer mammography Do not offer mammography Consider annual mammograph		Consider annual mammography	Annual MRI and consider annual mammography	
	Do not offer MRI	Do not offer MRI	Do not offer MRI		
	Do not offer mammography	Annual mammography	Annual mammography	Annual mammography and annual MRI	
40 - 49	Do not offer MRI	Do not offer MRI	Do not offer MRI		
50 50	Mammography	Consider annual mammography	Annual mammography	Annual mammography	
50 - 59	Do not offer MRI	Do not offer MRI	Do not offer MRI	Do not offer MRI unless dense breast	
60 60	Mammography as part of population screening	Mammography as part of population screening	Mammography as part of population screening	Annual mammography	
00 - 69 -	Do not offer MRI	Do not offer MRI	Do not offer MRI	Do not offer MRI unless dense breast	
70+	Mammography as part of population screening	Mammography as part of population screening	Mammography as part of population screening	Mammography as part of population screening	

Table 7. Summary of recommendations on screening for women with no personal history of breast cancer

¹Lifetime risk of developing breast cancer is <17%.

²Lifetime risk of developing breast cancer is at least 17% but <30%. This is likely to include individuals with pathogenic/likely pathogenic variants in PALB2 regardless of family history of breast cancer and, individuals with pathogenic/likely pathogenic variants in ATM and CHEK2 and at least one first</p>

degree relative affected by breast cancer. Individuals with pathogenic/likely pathogenic variants in ATM or CHEK2 and no close family history of breast cancer is considered to be of low/moderate risk of breast cancer (i.e. <17% lifetime risk).

³Lifetime risk of developing breast cancer is at least 30%. This is likely to include individuals with pathogenic/likely pathogenic variants in PALB2 and strong family history of breast cancer, or individuals where BOADICEA or other risk prediction tools suggest a high risk based on family history of breast cancer.

Adapted: National Institute for Health and Clinical Excellence. Familial breast cancer: classification, care and managing breast cancer and related risks in people with a family history of breast cancer. London: NICE; 2018

No role for ovarian cancer screening

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Genetic/Familial High-Risk Assessment: Breast and Ovarian

Version 3.2019 — January 18, 2019

NCCN.org

NCCN National Comprehensive Cancer Network®

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic

Version 2.2021 — November 20, 2020

Dec. 4, 2019. The National Comprehensive Cancer Network[®] (<u>NCCN</u>[®]) announced publication of the newest genetic risk assessment recommendations for breast, ovarian and pancreatic cancers. The NCCN Clinical Practice Guidelines in Oncology (<u>NCCN</u> <u>Guidelines</u>[®]) for <u>Genetic/Familial High-Risk Assessment: Breast, Ovarian, and</u> <u>Pancreatic</u> Version 1.2020

PANCREATIC CANCER SCREENING

- For individuals considering pancreatic cancer screening, the panel recommends that screening be performed in experienced high-volume centers, ideally under research conditions. The panel recommends that such screening only take place after an in-depth discussion about the potential limitations to screening, including cost, the high incidence of pancreatic abnormalities, and uncertainties about the potential benefits of pancreatic cancer screening.
- Consider screening using annual contrast-enhanced MRI/MRCP and/or EUS, with consideration of shorter screening intervals, based on clinical judgment, for individuals found to have worrisome abnormalities on screening. The panel emphasizes that most small cystic lesions found on screening will not warrant biopsy, surgical resection, or any other intervention.
- · For all individuals with pathogenic/likely pathogenic germline variants in STK11
- Consider pancreatic cancer screening beginning at age 30–35 years (or 10 years younger than the earliest exocrine pancreatic cancer diagnosis in the family, whichever is earlier).
- · For all individuals with pathogenic/likely pathogenic germline variants in CDKN2A
- Consider pancreatic cancer screening beginning at age 40 years (or 10 years younger than the earliest exocrine pancreatic cancer diagnosis in the family, whichever is earlier).
- For individuals with pathogenic/likely pathogenic germline variants in one of the other pancreatic cancer susceptibility genes (ATM, BRCA1, BRCA2, MLH1, MSH2, MSH6, EPCAM, PALB2, TP53), see GENE-A.
- Consider pancreatic cancer screening beginning at age 50 years (or 10 years younger than the earliest exocrine pancreatic cancer diagnosis in the family, whichever is earlier) for individuals with exocrine pancreatic cancer in ≥1 first- or second-degree relatives from the same side of (or presumed to be from the same side of) the family as the identified pathogenic/likely pathogenic germline variant.^d
- The panel does not currently recommend pancreatic cancer screening for carriers of mutations in genes other than STK11 and CDKN2A in the absence of a close family history of exocrine pancreatic cancer.

Hereditary Pancreatitis Genes

- For individuals with pathogenic/likely pathogenic variants in PRSS1 or other hereditary pancreatitis genes AND a clinical phenotype consistent with hereditary pancreatitis^e
- . Consider pancreatic cancer screening 20 years after onset of pancreatitis, or at age 40 years, whichever is earlier.

^d Abe T, et al. J Clin Oncol 2019;37:1070-1080.

^e The panel recognizes that patients with hereditary pancreatitis (sometimes caused by pathogenic germline variants in PRSS1, SPINK1, and other genes) have increased lifetime risks of pancreatic cancer. The clinical significance of pathogenic germline variants in these genes is unclear, when such variants are identified in individuals lacking a clinical history of pancreatitis. As such, the panel recommends germline testing for PRSS1, SPINK1, and other pancreatitis genes in individuals with a personal and/or family history of exocrine pancreatic cancer only if there is a personal and/or family history suggestive of hereditary pancreatitis.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

National NCCN Cancer Network*

Comprehensive NCCN Guidelines Version 2.2021 Genetic Testing Process

CANCER RISK MANAGEMENT BASED ON GENETIC TEST RESULTS^{a,1,2}

The inclusion of a gene in this table below does not imply the endorsement either for or against multi-gene testing for moderate-penetrance genes.

Gene	Breast Cancer Risk and Management	Ovarian Cancer Risk and Management	Pancreatic Cancer Risk and Management ⁸⁻¹⁷ and Other Cancer Risks	
BRCA1	 Evidence for increased risk: Very strong (with predisposition to triple negative disease) Absolute risk: >60%²⁰⁻²⁴ Management: See BRCA Pathogenic Variant-Positive Management 	Evidence for increased risk: Very strong Absolute risk: 39%-58% ²⁵ Management: See BRCA Pathogenic. Variant-Positive Management	Pancreatic cancer • Evidence for increased risk: Strong • Absolute risk: ≤5% • Management: Screening mutation carriers with a family history of pancreatic cancer, see PANC-A. Prostate cancer • See BRCA Pathogenic Variant-Positive Management	
	Comment: There have been a few case reports of Fanconi-like conditions in individuals with two BRCA1 pathogenic variants. ^{27,28}			
BRCA2	 Evidence for increased risk: Very strong (with predisposition to ER+ disease) Absolute risk: >60% ²⁰⁻²⁴ Management: See BRCA Pathogenic Variant-Positive Management 	Evidence for increased risk: Very strong Absolute risk: 13%-29% ²⁵ Management: <u>See BRCA Pathogenic</u> Variant-Positive Management	Pancreatic cancer • Evidence for increased risk: Very strong • Absolute risk: 5-10% • Management: Screening mutation carriers with a family history of pancreatic cancer, see. <u>PANC-A</u> . Prostate cancer and Melanoma • See BRCA Pathogenic Variant-Positive. Management	
	Comment: Counsel for risk of autosomal recessive condition in offspring.			

Comprehensive Cancer Network* NCCN Guidelines Version 1.2021 Prostate Cancer Early Detection

See footnotes on PROSD-2A.

National

NCCN

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Risk-reducing strategies

Recommendation 32

 Risk-reducing surgeries should be discussed and offered to women with pathogenic/likely pathogenic variants in BRCA1 and BRCA2 genes.

i) Risk-reducing surgery

Bilateral risk-reducing mastectomy

Risk-reducing mastectomy (RRM) remains the most effective strategy for reducing breast cancer risk. A meta-analysis showed that prophylactic bilateral mastectomy reduced the risk for breast cancer (RR=0.11, 95% CI 0.04 to 0.32) but not all-cause mortality. Another systematic review also showed 90 - 95% risk reduction.

Multidisciplinary consultations are recommended prior to surgery and should include discussions of the risks and benefits of surgery and option of breast reconstruction. Psychosocial effects of RRM should also be addressed. For carriers of pathogenic/likely pathogenic variants of PALB2, ATM and CHEK2, there is currently insufficient evidence for RRM and these individuals are managed based on family history.²⁵

Contralateral risk-reducing mastectomy

Carriers of pathogenic/likely pathogenic variants of BRCA1 and BRCA2 have increased risk of developing contralateral breast cancer. A prospective study showed average cumulative risks by age 70 years of 83% (95% CI 69 to 94) for BRCA1 and 62% (95% CI 44 to 79.5) for BRCA 2..._BRCA 1 particularly has higher risks as the majority of tumours would not receive endocrine therapy..._Further risk factors for contralateral breast cancer within BRCA carriers include early age of first breast cancer diagnosis (<50 years) with increasing numbers of first-degree relatives with breast cancer at a young age....

Contralateral risk-reducing mastectomy reduces risk of contralateral breast cancer by over 90% in BRCA1 and BRCA2 carriers and is associated with 48 - 63% survival advantage.

For carriers of pathogenic/likely pathogenic variants of PALB2, ATM and CHEK2, there is currently insufficient evidence for increased risk to contralateral breast cancer.

51 Management of Breast Cancer (Third Edition)

• Risk-reducing bilateral salpingo-oophorectomy

Risk-reducing bilateral salpingo-oophorectomy (RRSO) remains the **most effective risk reduction strategy** for the prevention of BRCA1and BRCA2-associated ovarian, fallopian tube and peritonial cancers. A Cochrane systematic review of moderate quality primary papers showed RRSO reduced risk of gynaecological cancers in both BRCA1 and BRCA2.

Pre-menopausal high risk women are most likely to benefit from RRSO, but also most likely to experience side effects from surgery, including loss of fertility, loss of sexual function and increased osteoporosis. Thus, RRSO is advised after completion of childbearing and from the age of **35 - 40 years old**. Notably, whereas earlier meta-analyses suggested that RRSO may reduce the risk of breast cancer, two recent studies presented strong evidence suggesting that the previous reports may have been subject to ascertainment bias. Correction for this bias suggested that **RRSO provided no or minimal protective effect on breast cancer risk**. In high risk women, evidence has shown that risk-reducing surgeries and chemoprevention are effective in reducing the risk of developing breast cancers.

Chemoprevention

Selective estrogen receptor modulators

A long-term RCT on tamoxifen as chemoprevention (20 mg for five years) for moderate and high risk women (as determined using the Tyrer Cuzick Model) found a reduction in the occurrence of all breast cancers in the tamoxifen group compared with placebo group (HR=0.71, 95% CI 0.60 to 0.83). After 20 years of follow-up, the estimated risk of developing all types of breast cancer was **12.3% (95% CI 10.1 to 14.5) in the placebo group compared with 7.8% (95% CI 6.9 to 9.0)** in the tamoxifen group; hence the **NNT for five years to prevent one breast cancer in the next 20 years was 22 (95% CI 19 to 26)**....

A higher incidence of deep vein thrombosis in women receiving tamoxifen compared with placebo was seen in the first 10 years of follow-up (OR=1.87, 95% CI 1.11 to 3.18). Although not significant, there were more endometrial cancers in the tamoxifen group, but only for the first five years of active treatment....

Women on tamoxifen should stop tamoxifen two months before trying to conceive or six weeks before elective surgery.

Aromatase inhibitors

In an RCT of anastrozole as chemoprevention in post-menopausal high risk women (as determined using the Tyrer Cuzick Model), after a median follow-up of five years, fewer women in the anastrozole group developed breast cancer compared with placebo group (HR=0.47, 95% CI 0.32 to 0.68). The predicted cumulative incidence of all breast cancers after seven years was 5.6% in the placebo group and 2.8% in the anastrozole group, suggesting that 36 women (95% CI 33 to 44) would need to be treated with anastrozole to prevent one cancer in seven years of follow-up.

Anastrozole was not associated with an increased risk of other cancers particularly gynaecological cancers, nor any thromboembolic or vascular events. A contraindication for anastrozole use was severe osteoporosis.

Oral contraceptives

For female carriers of pathogenic/likely pathogenic variants in BRCA1 or BRCA2, use of oral contraceptive **could reduce the risk of ovarian cancer**, with no significant **increase in risk to breast cancer**...

Council 2015 - 2017
UMMC Risk Management Clinic

- Since 2009
- Once a month
- Joint Breast Surgery/ Gyneoncology Clinic
 - Commitment from specialist to see patients
- CRM team on site

Role of team members

Breast care nurse team

- Navigation
- Breast cancer risk Breast surgeon team management
- Ovarian cancer risk ———— Gyne-oncologist team management

MDT (Medical Genetics Unit, Breast Surgery, Gyneoncology)

- On-site (every month)
- Discussion on new cases
- Type of mutation
- Risk Management Plan
- Psychosocial aspects (from genetic counsellor and breast nurse)
- **Occasional update on risk assessment clinic

Patient Decision Aids

- 2 Phd students
- Patient decision aids Aid communication of risk and education
- Coach patient through decision making process

Phd Student: Ms Grace Yeoh

THE BRCADA TEAM

Development by Grace Kar See Yeoh, PhD Candidate, Department of Surgery, Faculty of Medicine, University of Malaya. Supervised by Nur Aishah Taib & Lee Yew Kong, Faculty of Medicine, University of Malaya

THE BRCADA TEAM Faculty of Medicine University of Malaya 50603 Kuala Lumpur brcada@um.edu.my

Based on the Ottawa Personal Decision Guide @ 2015 O'Connor, Stacey, Jacobsen UNIVERSITY **OF MALAYA**

Contact us

https://brcada.um.edu.my/

No conflict of interest to declare

Phd Student: Ms Hamizah Sa'at

This decision aid is prepared by:

Ms Hamizah Hj Sa'at (PhD candidate, Faculty of Medicine, University of Malaya) Prof Dr Nur Aishah Mohd Taib (Clinician expert in Hereditary Breast and Ovarian Cancer, Consultant Breast Surgeon, University Malaya Medical Centre) Dr. Lee Yew Kong (Expert in Decision Aid, Faculty of Medicine, University of Malaya)

ORIGINAL ARTICLE

The needs of Southeast Asian BRCA mutation carriers considering risk-reducing salpingo-oophorectomy: a qualitative study

Hamizah Sa'at¹ · Yew-Kong Lee² · Sook-Yee Yoon³ · Siu Wan Wong³ · Yin Ling Woo⁴ · Kristine Barlow-Stewart⁵ · Nur Aishah Mohd Taib^{1,6}

hamizahsaat@yahoo.com

Malaysia- Genetic Clinic (Risk Assessment)

- HKL
- UMMC
- UKMMC
- Cancer Research Malaysia in SJMC
 - MAGIC Trial (Mainstreaming of Genetic Testing in Ovarian Cancer)
 - 22 sites across Malaysia

Conclusion

- Penetrance
- Affected vs unaffected
- Prognosis of previous cancer
- Strategies for screening and risk reduction

Outline

- Cancer genetics principles
- Mainstreaming vs conventional genetic testing
- Testing criteria and risk models
- Guiding principles to tests types of tests (direct to consumer tests)
- Interpreting results and post test counselling
- Cascade or predictive testing
- Risk Management

THANK YOU naisha@um.edu.my

References

- NCCN Guidelines v1.0.2021
- The Royal Marsden Cancer Genetics Unit BRCA Toolkit
 <u>https://www.mcgprogramme.com/brcatoolkit/</u>
- Grainne M. O'Kane, Ashton A. Connor, Steven Gallinger, Characterization, Detection, and Treatment Approaches for Homologous Recombination Deficiency in Cancer, Trends in Molecular Medicine, Volume 23, Issue 12, 2017, Pages 1121-1137
- https://www.onclive.com/view/hrd-testing-heralds-a-new-biomarker-butquestions-linger